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Abstract 

Two methods for evaluating the probability distribu- 
tion of X-ray intensities are presented. The first is an 
exact series representation in powers of the atomic 
form factors. Overall thermal-displacement and scale 
parameters are shown to be dependent only on the 
ratio of intensity to 0"2. The second method is a 
maximum-entropy distribution based on the first two 
moments of the intensity distribution. It is shown to 
be a robust and accurate method of incorporating 
heavy-atom effects and results in a simple generali- 
zation of the Wilson distribution. 

Introduction 

The determination of scale and thermal-displacement 
parameters is usually based on a least-squares fit to 
the measured intensities under the restriction that (I) 
= 0-2 (Wilson, 1942; Subramanian & Hall, 1982). 
This restriction results from the assumption that all 
possible atomic configurations within the asymmetric 
unit are, a priori, equally likely. Thus, the scattered 
X-ray intensities are, in the asymptotic limit, distrib- 
uted according to the standard Wilson distributions: 
exp ( -  I/0-2)/0- 2 for acentric reflections and 
exp ( -  1/20-2)/(2rr0-1) ~/2 for centric reflections. This is 
a very cautious assumption, the advantage of which 
is that it will not yield estimates of structure param- 
eters (scales, temperature factors etc.) that are not 
implied by the data. However, when the only 
property of the distribution used is its first moment, 
the actual working assumption is even weaker than 
the assumption that the structure is drawn from an 
ensemble where all atoms are independently and 
uniformly distributed in the unit cell. For example, 
there may exist intensity distributions P(I) that have 
(I) = 0-2 but that cannot possibly be generated by 
sampling any set of atomic configurations. Hence, it 
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is worthwhile to consider estimation methods, such 
as the Bayesian approach of French & Oatley (1982), 
that use the full functional forms of the intensity 
probability distributions. It is important, however 
that these distributions be represented accurately or 
the advantages of 'unbiased' estimation will be lost. 
Indeed, Shmueli (1982) has shown that the actual 
probability distributions can deviate dramatically 
from the Wilson distribution. As a first step, there- 
fore, a robust yet accurate method of evaluating 
probability distributions must be found. 

The ultimate aim of this work is to use probability 
distributions within a Bayesian framework to esti- 
mate scale and atomic displacement parameters. 
Since this requires some form of iterative optimi- 
zation, the derivatives of the distributions [with 
respect to the f.(h), for example] must be easily 
evaluated. The methods for deriving accurate prob- 
ability distributions of structure-factor magnitudes 
described by Shmueli & Wilson (1982) and Shmueli 
& Weiss (1987) have been based on the cumulant 
expansiorl or on the Fourier-Bessel series. The 
cumulant expansions have coefficients that are diffi- 
cult to calculate beyond the fifth order and hence can 
only be used to approximate the exact distribution 
under certain restrictive conditions. On the other 
hand, the Fourier-Bessel series (see Appendix III) 
are, in principle, exact but may require up to 40 
terms to achieve convergence. Another drawback of 
Fourier-Bessel series is that their dependence on the 
atomic scattering factors is 'buried' in sums of prod- 
ucts of the Bessel functions, making the evaluation of 
the derivatives difficult. 

In this paper, two alternative expressions of inten- 
sity probability distributions are presented. These 
expressions have the advantage that inhomogeneity 
in cell content (i.e. variation in the relative scattering 
powers of the atoms) is expressed exclusively in 
terms of sums of powers of the scattering factors, 0.n 
= y N ~fT~ (h), making the derivatives easy to evalu- / ~ =  

ate. Comparisons with the true (Fourier-Bessel- 
series) distributions are made. 
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10 INTENSITY STATISTICS. I 

A convergent-series representation 

Exact joint probability distributions (j.p.d.'s) 
between structure factors have been derived by 
Peschar & Schenk (1986) and Castleden (1987). Since 
all phase terms in the exact j.p.d, between structure 
factors appear within cosine invariants [see, for 
example, Castleden, 1987, equation (1)], they are 
easily integrated, so the j.p.d, between structure- 
factor magnitudes is given, to a first approximation, 
simply by the product of the zeroth-order (phase- 
independent) terms 

M 

J ( Fh,,Fh:. . .,FhM) = 1--I P ( Fh,). (1) 
t = l  

With the assumption that no atom occupies a special 
position and that no reflection forms an invariant 
with its symmetry-related reflections* (excluding 
those related by an inversion), i.e. v o//-~ n h = 0 and / - - , g = l  g g 

Y a/L'n = 0 implies ng 0 Vg, then P(Fh) is equal to g = l  g 

o o  N/G 

f I-I (G/Leh)Jo[Lehf~(h)p]Jo(F~o)pdp (2a) 
0 / . * = 1  

for Fh an acentric reflection and 
o o  N/G 

(1/27r1 f I-I (G/L~)Jo[Lehf ,(h)x]exp(iFhxldx (2b) 
- -  ¢o/.z = I 

for Fh a centric reflection. The symbol G is the order 
of the space group, N is the number of atoms in the 
unit cell, L = 1 for an acentric reflection, L = 2 for a 
centric reflection and eh is the statistical weight equal 
to the cardinality of the reflection's isotropy sub- 
group (see Bricogne, 1991, Appendices A2 and A3 
and references therein). 

Although work has been carried out to ensure that 
the original j.p.d, series [the left-hand side of (1)] can 
be summed to convergence (Peschar & Schenk, 
1986), little consideration has been given to the 
evaluation of the integrals that form the higher-order 
coefficients of the series. It has been shown, however 
(Castleden, 1988, ch. 7), that the results of the evalu- 
ation of the zeroth-order coefficients in (1) (described 
below) can also be used to calculate the higher-order 
terms. 

In their present form, the infinite integrals in (2) 
can only be numerically integrated for each value of 
Fn. Appendix III shows how they can be re-expressed 
as a series of special functions permitting a term-by- 
term evaluation. Expressed as intensity probability 
distributions, the series are 

K~ F(n PAc( l )dI= (dI /eo '2)exp(- l /eo '2)Z + 1) 
. :o  F(1) 

x (1/8or2)nM( - n, 1 ; 1 / 8 ¢ 2 )  (3a) 

* See Appendix I for a discussion. 

for an acentric reflection and 

Pc( l )dI  = dI  oo 
(2rreo./)1/2 exp ( -  I/2ecr2),=oZ K~ 

F(n + 1/2) 
( 2/ etr 2)" M ( - n, 1/2;I/2etr2) 

r(1/2) 
(3b) 

for a centric reflection. The M(a,b;z) are confluent 
hypergeometric functions and are equal to the more 
familiar Hermite (for the centric case) and Laguerre 
(for the acentric case) polynomials due to the rela- 
tions 13.6.17 and 13.6.9 of Abramowitz & Stegun 
(1972). These series (and any subseries) are automa- 
tically normalized for any values of Kn{n > 0} because 
of integral identities 7.621.4 of Gradshteyn & Ryzhik 
(1965) and 15.7.3 of Abramowitz & Stegun (1972). 
The first 14 coefficients K{) 5} are given in Table 1. 
The method of evaluation differs from the standard 
moment expansion method (Shmueli, 1982) and is 
explained in Appendix III. The sum to ten terms 
neglects terms of order N -  ~l or smaller. The general 
seventh-order term, which has been derived by 
Castleden (1988), permits a series development that 
neglects terms of order N-14 or smaller. From the 
first seven terms, it is easy to deduce the form for all 
higher orders. 

The benefit of this convergent-series representation 
is that the atomic contributions enter only in the 
form of sums of powers of their scattering factors. 
Moreover, tr2n/o'~ is independent of variations in 
overall scale and thermal-displacement parameters 
and, therefore, so are the coefficients K,/tr'~. Thus, 
the overall scale and thermal-displacement param- 
eters appear only within the ratio l/tr2, a fact not 
evident from the Fourier-Bessel-series expansion. 

The series (3) are convergent and, unlike asymp- 
totic distributions, may require large numbers of 
terms to represent the integrals accurately. The exact 
distributions will deviate strongly from the Wilson 
distributions when the cell contents are highly 
heterogeneous. As a worst case, Fig. 1 shows the 
series expansion for a structure with cell content of 
C29U in the space group P1 (cf  Shumeli, Weiss, 
Keifer & Wilson, 1984, Fig. l b). There is a slow 
convergence at the origin where the distribution even 
fails to remain positive. For such a structure, more 
than 20 terms seem to be required. 

The simplicity hoped for in expressing all 
heterogeneity in terms of tr, has been realized. How- 
ever it is confounded by the increasing complexity of 
the coefficients K, as n increases. Slow convergence 
and unwieldy terms reduce the distributions' accept- 
ability for iterative crystallographic computations. 
For this reason, another method that is less accurate 
but much more robust was investigated. 
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Table 1. Coefficients If. for the series expansions (3) of the intensity probability distributions 
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Fig. 1. Probability density distributions of  normalized intensities 
for a simulated C=gU structure in P1. The exact distribution was 
calculated using the Fourier-Bessel series method of  Shmueli, 
Weiss, Keifer & Wilson (1984) (see Appendix III) and is shown 
in the diagram by the solid line. The distributions calculated 
using (2) with the series terminating at the K3, KI 1 and KI5 terms 
are also plotted. 

Maximum-entropy representation 

The exact distributions calculated by Shmueli & 
Weiss (1987) and Shmueli, Weiss, Keifer & Wilson 
(1984) and the series representation described above 
show that the mode of the intensity distribution can 
shift away from zero (see Fig. 1). The simplest way 
to mimic this shift while keeping the probability 
everywhere positive is to make the log of the prob- 
ability quadratic in the intensities. This can be done 
via the principle of maximum entropy (PME) 
(Levine, 1980), assuming that the first two even 
moments are known. For a non-centric distribution, 
these are the averages (neglecting dispersion and 
assuming that all atoms are randomly distributed) 
(I) = eo-2 and ( i2)= 2e2o.22 _ e3Qlo.4 (Wilson, 1978). 
The Q], are space-group-dependent numbers that 
have been tabulated for all general and most 
symmetry-specific reflections by Wilson (1978) and 
Shmueli & Kaldor (1981).* The problem of extending 

* The notation used here is slightly different from that defined 
by these authors. This is to ensure that Qh = 1 for space groups P1 
and P ]  (see Appendix II). 
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the analysis to symmetry-specific reflections is con- 
sidered in Appendix I. The maximum-en t ropy  distri- 
but ion for an acentric intensity under these 
constraints is 

P ( l ) d I =  [ d I / Z ( a , f l ) ] e x p ( -  a I -  /312), (4a) 

where 

Z(te,/3) = (Tr/4/3)l/2exp( + a2/4/3){1 - ci9[a/(4/3)1/2]} 

(4b) 

and where a ,  /3 satisfy - O l n Z / O a = e o . 2  and 
-OlnZ/O/3 = 2e2o. 2 - dQJ, o.4. It  would be convenient 
to express a and /3  directly in terms of  the constrain- 
ing intensity averages but, for general values of  o., 
this does not  appear  to be possible. However,  with 
the definition 3" = eQ~o.4/o. 2, te---(1 - 3')/eo.2 a n d / 3  

3"(1 - -  3 ' ) 2 / 4 ( e o . 2 )  2. These approximat ions  are better 
the smaller 3' becomes (see Table 2). For  a structure 
consisting of  equal randomly  distributed atoms, 3' is 
approximately  a 1/N correction term. The maximum- 
ent ropy distr ibution is automatical ly  greater than 
zero for all intensity values and is also normalized. 
This distr ibution bears some resemblance to that  
obtained by Kronenburg ,  Peschar & Schenk (1991) 
[equations (3.1) and (3.4)] for a single structure 
factor in P1. It should be noted, however, that  in 
that  case the maximum-ent ropy  constraint  used is 
the max imum of  the distribution, while in our case it 
is the expectation value of  the first two even 
moments.  

For  a centric reflection, the distr ibution for Fb was 
derived first and then converted to an intensity distri- 
bution. The expec ta t ion  values (A 2) = co.2, (A 4> = 
3e2o. 2 - 3e3Qlo.4 yield the distr ibution 

P ( l ) d l =  [dI/I~/2Z(a,/3)]exp( - a l -  flI2), (5a) 

where 

Z(a,/3) = (2/3)-'/4/-'(1/2) 

x exp(+a2/8/3)D_l/Z[a/(Z/3)w2]. (5b) 

Defining the centric equivalent of  3' as 3' = eQTho.4/o. 2, 
one obtains the approximat ions  a = (1 -33 ' /2) /2eo '2  
a n d / 3  -- 1/23'(1 - 33"/2)2/(2eo'2) 2 for 3' small. Notice, 
again, how the overall thermal-displacement and 
scale parameters  appear  only in the r a t io  1/o'2 
because 3; is independent  of these values. 

At tempts  to include higher-order moments  of  the 
intensity distr ibution were hampered by the fact that  
the integrations required for the evaluation of  Z 
could only be expressed as series of  special functions. 
Numerical  integration techniques were not  tried. 

The principle of  max imum entropy does not  
assume an independent  r andom a tom distr ibution 
and is therefore applicable, at least theoretically, 
when this assumption does not hold. The simplest 
case is that  of  a known but unoriented molecular  

Table 2. Maximum-entropy values o f  a ' =  0~0"  2 and 
f l ,=  #o.2 for  various 3; values applicable to expres- 

sions (4) and (5) 

The a' and/3' numbers given are those that minimize the function 
- ln  Z(a',/3')- a ' - /3"(2-7)  for a noncentric reflection or the 
function -In Z(a',/3")- a'- /3"(3- 37) for a centric reflection. 
Thus, a given unit-cell content determines the 7 value which, in 
turn, determines the applicable a' and /3'. All numbers are 
accurate to six significant figures. Note that the ratio a'//3"--,.- 2 
as 7--* 1. For the acentric case, this implies that exp ( -  al - ill s) 
--*A-'exp [- /3 ' (1-  tr2)2/tr~] (A is a normalizing constant), which 
is a Gaussian distribution with mean tr2 and standard deviation 
cr / (2 /3 ' )  ''2. 

Acentric Centric 

0.20 1.0 0.0 0/30 0.5 0.0 
1/20 0.944848 0.0141415 1/30 0.475058 0.00455804 
2/20 0.878609 0.0319450 2/30 0.437515 0.0111580 
3/20 0.799761 0.0541187 3/30 0.395585 0.0193360 
4/20 0.7063 i 7 0.0815787 4/30 0.344923 0.0298224 
5/20 0.595751 0.115500 5/30 0.283873 0.0432254 
6/20 0.464859 0.157394 6/30 0.210308 0.0603524 
7/20 0.309547 0.209228 7/30 0.121492 0.0822842 
8/20 0.124513 0.273590 8/30 0.0138571 0.110487 
9/20 -0.0972171 0.353941 9/30 -0.117320 0.146981 

10/20 -0.365031 0.455010 10/30 -0.278410 0.194603 
11/20 -0.691903 0.583415 il/30 -0.478246 0.257434 
12/20 - 1.09638 0.748709 12/30 -0.729168 0.341436 
13/20 - 1.60618 0.965251 13/30 - 1.04978 0.455821 
14/20 -2.26507 1.25580 14/30 - 1.46836 0.615113 
15/20 -3.14781 1.65913 15/30 -2.03195 0.843983 
16/20 -4.39674 2.24864 16/30 -2.82535 1.18762 
17/20 -6.33177 3.18772 17/30 -4.02570 1.74065 
18/20 -9.90171 4.95532 18/30 -6.10892 2.75371 
19/20 - 19.9983 9.99919 19/30 - 11.3252 5.37509 

fragment for which the Debye distr ibution can be 
calculated. For  example, the expectation values of  an 
acentric reflection intensity, assuming that  the inter- 
atomic distances are known, are given by 

<I> =  o.2 + 6 ( s )  

and (6) 

< I 2 > =  2[EO.2 + G ( S ) ] 2  d o . 4  - 2 G ( s ) 2  .~. 4G'(s)  + K(s), 

where s = Ihl and the G, G '  and K functions are of  
the form 

N / e  

G(s )=  2fl  Z f ; , f~sinc (27rs l ru -  rd) 
N / e  

G'(s) = 2e 2 Y f 3  f ,sinc(2~-slr,, - rd) 
< ~ (7) 
N / e  N / e  

K(s) = 2d Z Z Lf.fo, 
/z < v oJ~8 

8 ~ v  
O)~ .V  

× sinc (2rrslr ,  - r~ + to, - rd).  

It can be seen that,  for this case, 3' = (o.4 + 2G 2 - K)/ 
(o.2 + G) 2 is not  necessarily small because G and K 
are of  order  1, making 3' "--2(1 - K / G 2 ) .  Hence, sig- 
nificant deviation from the random atom distr ibution 
(i.e. the Gaussian type distribution) is not  excluded a 
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priori  even for large molecular structures. Debye 
averages have been shown to be unexpectedly unhelp- 
f u l  in estimating scale and temperature factor (Hall 
& Subramanian, 1982). However, (6) and (7) show 
that this may be because the Debye estimates and the 
Wilson distribution are incompatible. Work is in 
progress on the extent of this effect. 

For arbitrary T, the values of a and fl must be 
evaluated by minimization of the function 
- I n  Z ( a , f l ) -  a ( I ) -  fl<12>. This function is guaran- 
teed to have a global minimum because its Hessian is 
everywhere a Gram matrix. Table 2 shows the results 
of this optimization. A double-precision Fortran 
program was written employing a conjugate 
gradient-minimization routine. Convergence prob- 
lems were encountered because the above functions 
are not defined for fl < 0, however, the final values 
were checked for accuracy against equivalent func- 
tions expressed in the arbitrary precision arithmetic 
of M a t h e m a t i c a  (Wolfram, 1987). Other tests have 
shown that the variation of a and/3 is very smooth 
and so a simple interpolation scheme can be used for 
varying values of T. Figs. 2 and 3 show the proba- 
bility distributions parameterized by Y. For clarity, 
sections through the distribution are depicted in 
Figs. 2(b) and (c) and 3(b) and (c). As expected, in 
the limit of a single dominant scatterer, Y "  1 and the 
probability distribution approaches a delta function 
around I/eo'2 = 1. 

Fig. 4 shows a comparison between the maximum- 
entropy and exact distributions for the C29U struc- 
ture used in Fig. 1. For only a small computational 
cost, the approximation follows the true contour 
quite well. 

Concluding remarks 

Two different approaches to the accurate evaluation 
of intensity distributions have been described. Many 
other researchers have already presented work in this 
area. Unlike these previous efforts, however, the 
emphasis here has been primarily on representations 
that are easily machine computable while still 
retaining fidelity to the actual distributions. The 
convergent-series representations are quickly conver- 
gent except for highly heterogeneous cell contents. 
The maximum-entropy distribution offers a 
promising compromise between accuracy and 
robustness. In both the series and maximum-entropy 
representations, it is found that overall scale and 
thermal-displacement parameters appear only in the 
ratio l/tr2. Thus, normalized structure factors E =  
(I/etr2) '/2 appear naturally from both the exact and 
approximate forms of the probability distribution. 
They are not an ad  hoc definition resulting solely 
from the Taylor expansion of the distribution about 
the origin. 
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0.4  

0.2 0.4 0.6 0.8 1 
T = cOlor41 ~r2 

(c) 

Fig. 2. (a) Acentric reflection probability distribution plotted with 
respect to the normalized intensity (I/etr2) and 3' = eQ~trJ tr2. 
Plan views in the indicated directions are shown in (b) and (c). 
(b) Plots of the probability density versus I/etr2 for values of T 
equal to 0, 1/10 ..... 9/10. (c) Plots of the probability density 
versus 7 for I/etr2 equal to 0, 1/2 .....  3. [Note that this is not a 
probability distribution P(7) for 7.] 
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APPENDIX I 

The derivation of the maximum-entropy distri- 
butions (4) and (5) assumed that the moments (Ih) -- 
(FhF-h) and ( I ~ ) -  (FhF-hFhF_h) are known (disper- 

v tL 
>.  

~1.51 
" 0  

~ 1 

25 0.~ 

O 
t3_ 

Norm~ 

View' direction for Fig. 3(/)) 

(a) 

3 v 

3 

direction 
Fig. 3(c) 

0.2 

0.5 1 1.5 2 2.5 3 
Normalized intensity I /etr2 

(b) 

1 . 2 '  

>-  

c-_ 1 

~0.8 

0.6 ̧  
I/etr2 = 1 / 2  

. . . . . .  - -  - -  - -  - -  

o 4  

0.2 3 , ! ' _ _ ,  

0.1 0.2 0.3 0.4 0.5 0.6 
_ 

~, = ,~-0',,o-,,/o-~4 
(c) 

Fig. 3. (a) Centric reflection probability distribution plotted with 
I 2 respect to the normalized intensity (I/eo'2) and y = eQho'4/o'2. 

Plan views in the indicated directions are shown in (b) and (c). 
(b) Plots of the probability density versus I/eo'2 for values of y 
equal to 0, 1/15 . . . . .  2/3. (c) Plots of the probability density 
versus y for 1/o"2 equal to 0, 1/2 . . . . .  3. [Note that this is not a 
probability distribution P(y) for y.] 

sion is ignored so that Friedel pairs are related 
by complex conjugation). Other expectation values, 
for example, (Fh), (FhFh), (FhF_hF_h) and 
(FhF_hF±hF+h), have been ignored because under 
the assumption of  a random uniform distribution of 
atoms they usually vanish and, thus, lead to Lag- 
range multipliers that also vanish. It is worth noting, 
though, that, owing to symmetry, products such as 
(FhFhFh) may occasionally retain nonzero expectation 
values (Foster & Hargreaves, 1963). Let h;, i = 1,..., 
G / e  be the set of distinct acentric reflections that are 
symmetry related to h, i .e.  h i = hr.R;,  so that h i ;~ 
- h i  V i ,  j .  The reflection h splits the space group into 
G / e  cosets all of the same cardinality e (Wondrat- 
schek, 1983; Bricogne, 1991, Appendices A2 and A3). 
For each coset {(R;, ti)]i = 1, 2, ..., p}, the number 
h ' t i  is the same V i =  1, 2, ..., e. The third-order 
expectation value (FhF_hF_h) will, in general, vanish 
unless _+ hi + hj + hk = 0 for some i, j,  k; i .e. a reflec- 
tion forms a triplet with its symmetry-related reflec- 
tions. Because the reflections are related by a 
rotation they have the same magnitude. For  three of 
them to form a triplet requires that they lie in the 
same plane and be related to one another by 60 or 
120 ° rotations [i .e.  form an equilateral triangle (see 
Shmueli & Kaldor, 1983, Table 1 and Appendix A)]. 
Such a condition can be satisfied, for example, in the 
space group P3, c unique. All h = hkO reflections 
form a triplet invariant with their symmetry-related 
reflections - h -  k , h , O ,  - k ,  - h ,  - k0, which implies 
that 3~Oh is a seminvariant. However, the origin used 
to fix the form of  the Seitz matrices has not been 
made explicit so that in fact the expectation value 
(FhFhFh) = 6tra(exp (6rrih" to)) is the expectation 

Probability versus Intensity 
1.2 

.~ 1 

"~ 0.8 o°°° ". 

>- 
~ 0.6 ° .  

>" 0.4 ° ' 

-~ 0.2 

exact 
series o 

M E +  
Wilson ... . .  

o 

o ÷ 

0 ~°~- 
0 0.5 1 1.5 2 2.5 3 

Normalized intensity f ie 'o" 2 

Fig. 4. Probability density distributions of normalized intensities 
for the C 2 9 U  structure in PI. The exact distribution, as calcu- 
lated by the Fourier-Bessel series (see Appendix III), is shown 
by the solid line. The maximum-entropy distribution is shown 
by the crosses. The Wilson distribution is represented by the 
dashed line. The series distribution is represented by the dia- 
mond and has been truncated at the 15th term. 
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value being evaluated, where, by convention, ro = 0 is 
on the threefold axis. Two different cases can arise 
depending on whether the origin ro is taken to be a 
random variable or not. In this work, the origin is 
taken as being uniformly distributed and therefore 
all odd phase-dependent terms must vanish. 
Although this averaging has no effect in space 
groups such as P1 and P] ,  a careful space group by 
space group analysis needs to be undertaken for a 
fixed origin. 

A P P E N D I X  II 

The definitions for the moments in Wilson (1978) 
vary slightly from those used here. Labelling the 
definitions of Wilson by the superscript W, one has 
the equivalences: pW=eG and Qw=eeGQ [cf. 
Wilson, 1978, equation (6), p. 988] where G is the 
order of the space group. For example, the Wilson 
fourth-order moment qW is given here by 

( e  4 ~e exp [2-rri(hi- hj + hk - hl) ' r  qW 
\ i , j , k , I  

+ 2~'ih" ( t i -  tj + t k -  tl)]~. (A1) 

The expectation value is zero unless the coefficient 
of r is zero. There are three special cases for which 
the summation can be reduced: (1) i = j and k = l, (2) 
i =  / and j =  k and (3) i = j =  k = / .  Conditions (1) 
and (2) give (G/e) 2 and condition (3) sums to (G/e), 
however, the first two include the third condition as 
a subcondition and so 2(G/e) must be subtracted. 
Thus, Q W=2(pW)2-qW, which gives 2(Ge) 2 -  
p4[2(G/e)z + (G/e) - 2(G/e) + q] or, rearranging, QW 
= Ge3[1 - q/(G/e)]. If the condition hi - hj + hl, - ht 

0 V i, j, k, l, i ~ j  or k s / ,  holds, the fourth-order 
moment can be calculated as Q =  1 with q = 0 ,  
otherwise 

G / L e  

q = 2 Z t~(h i - hj + hg - h,) 
i <  j ,  k ~ j ,  l ~ i ,  l ~ k  

X cos [27r(ti - tj + tk -- tl)]. 

The centric case is similar, except that the sum is 
over the G/2e reflections not related by an inversion. 
Numerical values for qW are given in Table 1 of 
Shmueli & Kaldor (1981). 

A P P E N D I X  l l I  

The derivation of the series (3) from the integrals (2) 
is based on a re-expression of the Bessel functions 

which, in the limit Fh--,0, have a substantial con- 
tribution only near the origin. At this point, they 
are approximately exponentially decreasing, i.e. 
Jo(x)--,exp{-x2/4}, an approximation that permits 
the analytical integration of (2) and yields the Wilson 
distributions. To ensure that, in the limit of small Fh, 
the exact distributions converge to the Wilson distri- 
butions, the Bessel functions in the integrals (2) are 
first expressed as a product of the exponential term 
and a series F of 'corrections' 

Jo(Lefx) = exp [ - (Lefx)Z/4]F(Lefx) 

with (A2) 
o o  

F(Lefx) = Z Gk(Lefx/2) 2k/k!. 
k=O 

The series coefficients, Gk, can be determined by 
moving the exponential term to the left-hand side 
and equating powers of x. This yields the rational 
values Gk=M(-k ,1;1) ,  where M is a confluent 
hypergeometric function that varies a s  k -1/4 for 
k--,oo. Equation (A2) is exact in that, order for 
order, the left- and right-hand sides are the same. 
The product over the Bessel functions occurring in 
(2) can be written as 

N / L e  o~ 

I-i Jo(Lef~,x)= exp(-Leo'2x2/4) Z K,,(x/2) 2", 
~=1 n=0 

(A3) 

where L = 1 for a noncentric reflection and L = 2 for 
a centric one. The coefficient K, is, in turn, a sum 

K,= Z Kr. (A4) 
{t3=,, 

The set {F} = n is the set of unique (unordered) sets 
of positive integers Yl,...,Ym such that y~ + ... + YM 
= n [of which there are p (n) (Abramowitz & Stegun, 
1972, ch. 24)] and 

M 
K r  = G m a x ( N _ M , O ) ] - -  [ G , / ,  N M ( ~ I , . . . )  

i= 1 Yi! M! 
N I L e  N / L e  N / L e  

x ~ Z Z Lef2~'Lef2~ LefE~M 
• • • g l  I J l  2 • • • . l  l M ' 

i I = 1 i 2 = 1 i M = l 
i 2 ~ i l  i M ~ i  ! 

i M ~ i 2 

i M ~ i M - I  (A5)  

where NM is the number of distinct ways to order the 
integers y~,. . ., yM. 

The K, are independent of x and so, through 
substitution of the series (A3) into (2), the integration 
can be performed term by term using the identity 
6.631.1 of Gradshteyn & Ryzhik (1965). The multi- 
ple conditional summations appearing in (A 5) can be 
replaced by products of single unconditional sum- 
mations. For example, the general third-order sum- 



16 INTENSITY STATISTICS. I 

Table 3. Mathematica program for evaluating the sums of products of scattering factors appearing in (A5) 

The command simp[e3[a,b,c]] converts the left-hand side of  (A6) to the right-hand side. One can see that e3[a,b,c] accurately represents 
the multiple sum (A6) and that each conversion left-hand ~ side right-hand side in this program preserves arithmetic truth. For example: 
sum[ - (e__), 1_] • = - sum[e_, 1_] (line 4) merely takes the negative sign outside the summation. Higher-order terms can be easily expressed 
in the same manner as e3. All the terms in Table 1 are based on the results of  this reduction. 

(** define expansions and transformations for sum **) 
sum[e_ ,{i_,l_}] := sum[e,{i}]-Sum[e/, i->l[[j]],{j,Length[l]}]; 
sum[el_+e2_, i_ ] := sum[el,l] + sum[e2,1]; 
sum[-(e_) , i_ ] := -sum[e,l]; 
sum[c_ e_ ,{i_}] := c sum[e,{i}] /; FreeQ[c,i]; 
sum[e_ ,{i_}] := sig[ss[e]] /; prodQ[e,i]; 
(** check that the expression is a product f[i,a]f[i,b]f[i,c]..**) 
prodQ[f[i_,a_], i_] = True; 
prodQ[f[i_,a_] expr_,i_] := 
prodQ[expr_, i_] := 
ss[f[_,a_]] = a; ss[f[_,a_] 
(********* S 

prodQ[expr,i]; 
False; 
expr_] :=a+ss[expr]; 
I M P L I F Y 

slmp[f[i_,a_] e_] : 
slmp[e_] 
slmp[e_] 
slmp[c_ e _ ]  

slmp[sum[e_,{i_}]] : 
slmp[sum[e_,{i }]] : 
e3[a_,b_,c_] := sum[ 

f[i2,b],{i2,{ 
f[il,a],{il 

simp[e3[a,b,c]] 

= f[i,a]simp[e]; 
= simp /@ e /; 
= e /; 
= c simp[e] /; 
= simp[sum[simp[e],{i}]] /; 
= simp[sum[Expand[e],{i}]] /; 
sum[sum[f[i3,c],{i3,{i2,il}}] 

il}}] 
}1; 

W * W ~ * W W * ~ )  

Head[e]=!=sum; 
FreeQ[e,sum]; 
NumberQ[c]; 
!FreeQ[e,sum]; 
FreeQ[e,sum]; 

mation can be rearranged to give 
N N N 

Z Z ~ f ~ f ~ f ~  
i = l j = l k = l  

j ~ i  k # i  
k ~ j  

-- oraor l3ory-  orl30"a+~,-  oraorl3+y 

- t r r t r a + e  + 2tra+t~+r. (A6) 

The right-hand side is a function only of the sum of 
powers of the scattering factors 

N 

o ' . =  E f t ,  
i=1 

which are simple to evaluate. The routine re- 
expression of the multiple summations such as (A6) 
that occur in (A5) is discussed in detail in Appendix I 
of Foster & Hargreaves (1963). Shmueli & Wilson 
(1983) have proposed an algorithm to implement this 
reduction using REDUCE (Hearn, 1973). We have 
opted for the more expressive functional language of 
Mathematica (Wolfram, 1987) as shown in Table 3. 
The general nth-order form can be inferred from the 
form of the first seven terms* to be the following: for 

* The Mathematica program was written with simplicity in 
mind and runs out of  memory (32 Mbytes!) when applied to the 
general eighth-order term. 

the group of n integers { ~ l , a 2 , a 3 , a 4 , . . . , a n }  determine 
the set of all different partitions of these integers, i.e. 
all possible sets of sets so that each integer appears in 
one and only one element (a set) per set, for example, 
{{al, if2, an}, {a3, a4},'''}" A set has no implied order 
to its elements so that two partitions are different if 
there is no objective mapping between their elements 
giving pairwise equality (set equality is defined in the 
standard manner). There is a total of 

s 2 ( :  ) (A7)  
m = l  

of these sets, where $2 is a Stirling number of the 
second kind (Abramowitz & Stegun, 1972, 24.1.4). 
For each such set of sets, calculate the product 

- 1" [ -  - (A8)  
/ z= l  

where n,~ is the number of elements in the set that 
forms the /zth element and y,~ is its sum. Summing 
up these values yields the appropriate nth-order 
term. Although this prescription is trivial to code in 
Mathematica (Wolfram, 1987) and is not memory 
intensive, the number of terms to be considered 
explodes exponentially. 

Another method is to use the band-limited nature 
of the probability distribution [i.e. P(Fh)-  0 for 
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Fh> try] and the 'orthogonality' of the Bessel func- 
tions to produce a Fourier-Bessel series for the 
noncentric reflections. Thus, the probability can be 
expressed as 

o o  

P(Ih) = Z amJo(JmI~/2/O'l), (A9) 
m = l  

where jm is the mth zero of Jo. The values of am can 
be determined using the orthogonality condition 
(Watson, 1942; see also Gradshteyn & Ryzhik, 1965, 
6.521) 

O" 1 

(1/2)trl2[J, (j,,,)]2 f Jo( Fx)Jo(Fjm/ °"1)F dF 
o 

=a(jm--XOrl) ,  

(A10) 

which gives 
N / e  

a,,, = trl2[Jl(jm)] -2 1--I Jo(ef~,jm/tr~) 
p . = l  

= o'?2[j~(jm)]-2exp- (ecr2/4tr~)j2m 
oo 

X Z K~(ejm/2°' ,)  2'' 
n=O 

(All)  

This series expansion is used to calculate the exact 
distributions for comparison in Figs. 1 and 4. At 
least 40 terms were used in any expansion. 

These series have importance when the central- 
limit-theorem approximation (i.e. the Wilson term) is 
inapplicable. For example, if the cell is considered to 
be made up of a small number of fragments with 
structure factors [F£I =fu(h, 0u), then the expansions 
(3) still hold for random fragments but the higher- 
order terms have more significance. Thus, a joint 
probability distribution of fragment orientations 0u 
can be calculated. 
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Abstract 

The coherent wave field, which is the ensemble aver- 
age of the solution of the wave equation, is studied. 
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The approach is similar to that used in the previous 
theory on extinction [Kato (1976). Acta Cryst. A32, 
453-457, 458-466]. Here it is extended to deal with 
general cases where the single average and the 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1994 


